测试网页对LaTex公式的渲染效果

机器学习

测试


行间插入

\\(a + b\\)

\(a + b\)


另取一行

$$a + b$$

$$a + b$$


下标

$$x_1$$

$$x_1^2$$

$$x^2_1$$

$$x_{22}^{(n)}$$

$${}^*x^*$$

$$x_{balabala}^{bala}$$

$$x_1$$

$$x_1^2$$

$$x^2_1$$

$$x_{22}^{(n)}$$

$${}^x^$$

$$x_{balabala}^{bala}$$


分式

$$\frac{x+y}{2}$$

$$\frac{1}{1+\frac{1}{2}}$$

$$\frac{x+y}{2}$$

$$\frac{1}{1+\frac{1}{2}}$$


根式

$$\sqrt{2}<\sqrt[3]{3}$$

$$\sqrt{1+\sqrt[p]{1+a^2}}$$

$$\sqrt{1+\sqrt[^p\!]{1+a^2}}$$

$$\sqrt{2}<\sqrt[3]{3}$$

$$\sqrt{1+\sqrt[p]{1+a^2}}$$

$$\sqrt{1+\sqrt[^p!]{1+a^2}}$$


求和积分

$$\sum_{k=1}^{n}\frac{1}{k}$$

$\sum_{k=1}^n\frac{1}{k}$

$$\int_a^b f(x)dx$$

$\int_a^b f(x)dx$

$$\sum_{k=1}^{n}\frac{1}{k}$$

$\sum_{k=1}^n\frac{1}{k}$

$$\int_a^b f(x)dx$$

$\int_a^b f(x)dx$


空格

紧贴 $a\!b$
没有空格 $ab$
小空格 a\,b
中等空格 a\;b
大空格 a\ b
quad空格 $a\quad b$
两个quad空格 $a\qquad b$

紧贴 $a!b$
没有空格 $ab$
小空格 a,b
中等空格 a;b
大空格 a\ b
quad空格 $a\quad b$
两个quad空格 $a\qquad b$
$$\int_a^b f(x)\mathrm{d}x$$

$$\int_a^b f(x)\,\mathrm{d}x$$

$$\int_a^b f(x)\mathrm{d}x$$

$$\int_a^b f(x),\mathrm{d}x$$


公式界定符

\( ( \)
\( ) \)
\( [ \)
\( ] \)
\( \{ \)
\( \} \)
\( | \)
\( \| \)

掘金:
$ ( $
$ ) $
$ [ $
$ ] $
$ { $
$ } $
$ | $
$ | $


矩阵

$$\begin{matrix}1 & 2\\\\3 &4\end{matrix}$$

$$\begin{pmatrix}1 & 2\\\\3 &4\end{pmatrix}$$

$$\begin{bmatrix}1 & 2\\\\3 &4\end{bmatrix}$$

$$\begin{Bmatrix}1 & 2\\\\3 &4\end{Bmatrix}$$

$$\begin{vmatrix}1 & 2\\\\3 &4\end{vmatrix}$$

$$\left|\begin{matrix}1 & 2\\\\3 &4\end{matrix}\right|$$

$$\begin{Vmatrix}1 & 2\\\\3 &4\end{Vmatrix}$$

$$\begin{matrix}1 & 2\\3 &4\end{matrix}$$

$$\begin{pmatrix}1 & 2\\3 &4\end{pmatrix}$$

$$\begin{bmatrix}1 & 2\\3 &4\end{bmatrix}$$

$$\begin{Bmatrix}1 & 2\\3 &4\end{Bmatrix}$$

$$\begin{vmatrix}1 & 2\\3 &4\end{vmatrix}$$

$$\left|\begin{matrix}1 & 2\\3 &4\end{matrix}\right|$$

$$\begin{Vmatrix}1 & 2\\3 &4\end{Vmatrix}$$


排版数组

\mathbf{X} =
\left( \begin{array}{ccc}
x\_{11} & x\_{12} & \ldots \\\\
x\_{21} & x\_{22} & \ldots \\\\
\vdots & \vdots & \ddots
\end{array} \right)

\mathbf{X} =
\left( \begin{array}{ccc}
x_{11} & x_{12} & \ldots \\
x_{21} & x_{22} & \ldots \\
\vdots & \vdots & \ddots
\end{array} \right)


长公式

$$
\begin{multline}
x = a+b+c+{} \\\\
d+e+f+g
\end{multline}
$$

$$
\begin{aligned}
x ={}& a+b+c+{} \\\\
&d+e+f+g
\end{aligned}
$$

$$
\begin{multline}
x = a+b+c+{} \\
d+e+f+g
\end{multline}
$$

$$
\begin{aligned}
x ={}& a+b+c+{} \\
&d+e+f+g
\end{aligned}
$$


公式组

$$
\begin{gather}
a = b+c+d \\\\
x = y+z
\end{gather}
$$

$$
\begin{align}
a &= b+c+d \\\\
x &= y+z
\end{align}
$$

$$
\begin{gather}
a = b+c+d \\
x = y+z
\end{gather}
$$

$$
\begin{align}
a &= b+c+d \\
x &= y+z
\end{align}
$$


分段函数

$$
y=\begin{cases}
-x,\quad x\leq 0 \\\\
x,\quad x>0
\end{cases}
$$

$$
y=\begin{cases}
-x,\quad x\leq 0 \\
x,\quad x>0
\end{cases}
$$


划线数组

$$
\left(\begin{array}{|c|c|}
1 & 2 \\\\
\\hline
3 & 4
\end{array}\right)
$$

$$
\left(\begin{array}{|c|c|}
1 & 2 \\
\hline
3 & 4
\end{array}\right)
$$


制表

$$
\begin{array}{|c|c|}
\hline
{1111111111} & 2 \\\\
\hline
3 & 4 \\\\
\hline
\end{array}
$$

$$
\begin{array}{|c|c|}
\hline
{1111111111} & 2 \\
\hline
3 & 4 \\
\hline
\end{array}
$$


常用希腊字母

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
{\alpha} & {\backslash alpha} & {\theta} & {\backslash theta} & {o} & {o} & {\upsilon} & {\backslash upsilon} \\\\
\hline
{\beta} & {\backslash beta} & {\vartheta} & {\backslash vartheta} & {\pi} & {\backslash pi} & {\phi} & {\backslash phi} \\\\
\hline
{\gamma} & {\backslash gamma} & {\iota} & {\backslash iota} & {\varpi} & {\backslash varpi} & {\varphi} & {\backslash varphi} \\\\
\hline
{\delta} & {\backslash delta} & {\kappa} & {\backslash kappa} & {\rho} & {\backslash rho} & {\chi} & {\backslash chi} \\\\
\hline
{\epsilon} & {\backslash epsilon} & {\lambda} & {\backslash lambda} & {\varrho} & {\backslash varrho} & {\psi} & {\backslash psi} \\\\
\hline
{\varepsilon} & {\backslash varepsilon} & {\mu} & {\backslash mu} & {\sigma} & {\backslash sigma} & {\omega} & {\backslash omega} \\\\
\hline
{\zeta} & {\backslash zeta} & {\nu} & {\backslash nu} & {\varsigma} & {\backslash varsigma} & {} & {} \\\\
\hline
{\eta} & {\backslash eta} & {\xi} & {\backslash xi} & {\tau} & {\backslash tau} & {} & {} \\\\
\hline
{\Gamma} & {\backslash Gamma} & {\Lambda} & {\backslash Lambda} & {\Sigma} & {\backslash Sigma} & {\Psi} & {\backslash Psi} \\\\
\hline
{\Delta} & {\backslash Delta} & {\Xi} & {\backslash Xi} & {\Upsilon} & {\backslash Upsilon} & {\Omega} & {\backslash Omega} \\\\
\hline
{\Omega} & {\backslash Omega} & {\Pi} & {\backslash Pi} & {\Phi} & {\backslash Phi} & {} & {} \\\\
\hline
\end{array}
$$

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
{\alpha} & {\backslash alpha} & {\theta} & {\backslash theta} & {o} & {o} & {\upsilon} & {\backslash upsilon} \\
\hline
{\beta} & {\backslash beta} & {\vartheta} & {\backslash vartheta} & {\pi} & {\backslash pi} & {\phi} & {\backslash phi} \\
\hline
{\gamma} & {\backslash gamma} & {\iota} & {\backslash iota} & {\varpi} & {\backslash varpi} & {\varphi} & {\backslash varphi} \\
\hline
{\delta} & {\backslash delta} & {\kappa} & {\backslash kappa} & {\rho} & {\backslash rho} & {\chi} & {\backslash chi} \\
\hline
{\epsilon} & {\backslash epsilon} & {\lambda} & {\backslash lambda} & {\varrho} & {\backslash varrho} & {\psi} & {\backslash psi} \\
\hline
{\varepsilon} & {\backslash varepsilon} & {\mu} & {\backslash mu} & {\sigma} & {\backslash sigma} & {\omega} & {\backslash omega} \\
\hline
{\zeta} & {\backslash zeta} & {\nu} & {\backslash nu} & {\varsigma} & {\backslash varsigma} & {} & {} \\
\hline
{\eta} & {\backslash eta} & {\xi} & {\backslash xi} & {\tau} & {\backslash tau} & {} & {} \\
\hline
{\Gamma} & {\backslash Gamma} & {\Lambda} & {\backslash Lambda} & {\Sigma} & {\backslash Sigma} & {\Psi} & {\backslash Psi} \\
\hline
{\Delta} & {\backslash Delta} & {\Xi} & {\backslash Xi} & {\Upsilon} & {\backslash Upsilon} & {\Omega} & {\backslash Omega} \\
\hline
{\Omega} & {\backslash Omega} & {\Pi} & {\backslash Pi} & {\Phi} & {\backslash Phi} & {} & {} \\
\hline
\end{array}
$$


来自

https://juejin.im/post/5a6721bd518825733201c4a2



碰到底线咯后面没有啦

0%